CAMBRIDGE, Mass.-Stem cells grew, multiplied and differentiated into brain cells on a new three-dimensional scaffold of tiny protein fragments designed to be more like a living body than any other cell culture system.
An MIT engineer and Italian colleagues will report the invention-which may one day replace the ubiquitous Petri dish for growing cells-in the Dec. 27th issue of the PLoS ONE. Shuguang Zhang, associate director of MIT's Center for Biomedical Engineering, is a pioneer in coaxing tiny fragments of amino acids called self-assembling peptides to organize themselves into useful structures. Working with visiting graduate student Fabrizio Gelain from Milan, Zhang created a designer scaffold from a network of protein nanofibers, each 5,000 times thinner than a human hair and containing pores up to 20,000 times smaller than the eye of a needle.
The researchers were able to grow a healthy colony of adult mouse stem cells on the three-dimensional scaffold without the drawbacks of two-dimensional systems.
In addition to helping researchers get a more accurate picture of how cells grow and behave in the body, the new synthetic structure can provide a more conducive microenvironment for tissue cell cultures and tissues used in regenerative medicine, such as skin grafts or neurons to replace brain cells lost to injury or disease.
The scaffold itself can be transplanted directly into the body with no ill effects.
"The time has come to move on from two-dimensional dishes to culture systems that better represent the natural context of cells in tissues and organs," said Zhang, whose coauthors on the paper, in addition to Gelain, are from institutes and medical schools in Milan, Italy.
link to full article
Wednesday, December 27, 2006
MIT creates 3-D scaffold for growing stem cells
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment